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Abstract

In this paper, we present the design of an adaptive non-
linear algorithm for estimation of Euclidean position of
features in a static environment in the field of view of a
monocular camera. The development of the geometric
model and camera motion kinematics is based on our
previous work in [2]. This paper presents a new alter-
nate approach to estimation of 3D coordinates of feature
points that is simpler in mathematical formulation and
easier to implement.

1 Introduction

The estimation of 3D Euclidean position of features in an
environment from 2D images have applications in such di-
verse areas as autonomous vehicle navigation, visual servo-
ing, 3D modeling, and geospatial mapping. In the computer
vision community, this is typically recognized as the prob-
lem of identification of Structure from Motion (SFM), or Si-
multaneous Localization and Mapping (SLAM, [5]), where
a vehicle such as a mobile robot is required to incremen-
tally build a map of its environment as well as determine
its position as it travels through the environment, scanning
the scene using a vision system. Although the transforma-
tion of 3D Euclidean information by a perspective camera
into 2D image space representation is inherently nonlinear,
the most well known approaches are based on linearization
based techniques such as extended Kalman filtering [5, 14].
Recently, the application of nonlinear system analysis tools
towards a solution to this problem have begun to appear
in works from many researchers [1, 8, 9], utilizing sliding
mode and adaptive estimation techniques to build nonlinear
observers.

The work presented in this paper is an evolution from our
previous efforts [2] in the design and implementation of a
nonlinear algorithm for 3D Euclidean position estimation.
Similar to our previous approach, the camera motion is mod-
eled in terms of the homography between two different views
of the environment captured by the camera. One of the
views is utilized as a constant image (corresponding to a
reference position), while the other is a continuous temporal
update of the 2D projection of the environment as seen by
the camera while in motion. It is assumed that the cam-

1This work was supported in part by two DOC Grants, an
ARO Automotive Center Grant, a DOE Contract, a Honda Cor-
poration Grant, and a DARPA Contract.

era is calibrated, and hence, the intrinsic calibration para-
meters are available. The kinematics of camera motion is
formulated based on 2 1

2D visual servoing work presented in
[13]. A stack of continuous motion estimators, described in
detail in [3], is then utilized to estimate this kinematic sig-
nal in terms of every feature point. The result is a stack of
camera velocity estimates that are scaled by the (constant)
depth of the individual feature points from the camera rela-
tive to its reference location. The unknown scale factors are
subsequently identified by using the adaptive least-squares
technique [16], based on the satisfaction of a persistent exci-
tation condition. With the unknown depths for every feature
point identified, the 3D Euclidean position of all features are
recovered. This is unlike our previous approach, where we
developed a stack of Euclidean position estimators based on
the image-space dynamics for every feature point. Hence,
the mathematical formulation of the algorithm is simpler
and more intuitive. Experimental results obtained from the
same input data utilized in our previous work2 seem to sug-
gest that the new estimation algorithm converges faster, in
a span of a few seconds as opposed to many tens of seconds.

This paper is organized as follows. A geometric model de-
scribing the evolution of image coordinates of various feature
points in the environment in terms of camera motion is pre-
sented in Section 2. Section 3 presents the kinematics of the
camera in terms of image space and partially reconstructed
Euclidean information. The velocity estimation algorithm
is described in Section 4, and is key to the development of
the 3D Euclidean position estimation algorithm described in
Section 5. Sections 6 and 7 demonstrate the performance of
the position estimation algorithm through simulations and
experimental results from our test-bed, respectively.

2 Vision System Geometric Model

Figure 1 shows the geometric relationship between a moving
perspective camera and features on a static object in its
field of view. The geometric model developed in this section
is based on two views of the object from the camera; one
of which is from a reference position denoted by I∗, and
the other is from a time varying current position denoted
by I. The origin of the camera frame is assumed to be
coincident with the optical center of the camera. Let xf (t) ∈
R3 represent the position of the object’s body fixed frame

2A version of the work in [2] containing experimental re-
sults is currently under peer-review for consideration as a journal
publication.
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Figure 1: Geometrical relationships between the moving
camera and the object.

F∗ relative to the camera frame I, and let R(t) ∈ SO(3)
represent the orientation between the object and the camera
frame such that R : F∗ → I. The constant vector si ∈ R3
and the vector m̄i(t) ∈ R3 denote the 3D Euclidean position
of the ith feature point Oi relative to the object frame F∗
and camera frame I, respectively, and

m̄i ,
£
xi yi zi

¤T
. (1)

The constant terms x∗f ∈ R3, R∗ ∈ SO(3) and m̄∗i ∈ R3 are
similarly defined for the camera at the reference position
denoted by I∗. From the geometry between the coordinate
frames depicted in Figure 1, it can be seen that

m̄i = xf +Rsi (2)

m̄∗i = x∗f +R
∗si. (3)

After eliminating the term si from (2) and (3), we have

m̄i = x̄f + R̄m̄
∗
i (4)

where R̄(t) ∈ SO(3) and x̄f (t) ∈ R3 are defined as follows
R̄ = R(R∗)T x̄f = xf − R̄x∗f . (5)

It is clear from (5) and Figure 1 that R̄(t) and x̄f (t) de-
scribe the rotation and translation, respectively, of the cam-
era frame I relative to the reference position I∗.
Let three non-collinear feature points on the object define
the plane π∗ in Figure 1. If the constants n∗ ∈ R3 and
d ∈ R denote the normal vector and distance to this plane,
respectively, from the camera reference position I∗, then for
all i feature points that lie on the plane, (4) can be expressed
as follows

m̄i =
³
R̄+

x̄f
d∗
n∗T

´
| {z } m̄∗i

H

(6)

where H(t) ∈ R3×3 represents a Euclidean homography
[6]. To facilitate the development of the relationship given

in (6) in terms of image coordinates of the feature points
as captured by the moving camera, we define the normal-
ized Euclidean coordinates of the feature points, denoted by
mi(t),m

∗
i ∈ R3 as

mi , m̄i
zi

m∗i , m̄∗i
z∗i
. (7)

The corresponding projective pixel coordinates of the feature
points are denoted by pi(t), p∗i ∈ R3 as follows

pi =
£
ui vi 1

¤T
p∗i =

£
u∗i v∗i 1

¤T
. (8)

The image coordinates of the features and their normalized
Euclidean coordinates are related by the pin-hole camera
model [7] such that

pi = Ami p∗i = Am
∗
i (9)

where A ∈ R3×3 is a known, constant, and invertible in-
trinsic camera calibration matrix. Utilizing (7) and (9), the
relationship in (6) can be expressed in terms of image coor-
dinates as follows

pi =
z∗i
zi|{z} A

³
R̄+ x̄h(n

∗)T
´
A−1| {z } p∗i

αi G

(10)

where αi(t) ∈ R denotes the depth ratio, x̄h(t) = x̄f
d∗ ∈ R3

denotes the scaled translation vector and G(t) ∈ R3×3 is a
full rank homogeneous collineation matrix [12]. Given more
than four pairs of correspondences (pi(t), p∗i ) coplanar with
π∗, the set of linear equations in (10) can be solved for a
unique G(t) up to a scale factor by using techniques such as
least squares minimization [12]. This approach is appropri-
ate for visual servoing in structured environments, where we
have the option of choosing feature points that are coplanar.
In a structure-from-motion algorithm, we are interested in
mapping the shape of objects in the environment around the
camera, and feature points of interest tracked by the vision
system will not lie on a plane. The key here is to utilize
the Virtual Parallax algorithm, proposed in [13] and also
described in detail in our previous work in [2], in order to
compute G(t) and αi(t). Utilizing this method, any three
feature points on the object can be chosen in order to de-
fine a ‘virtual’ plane π∗. The epipolar constraints governing
the projection of the rest of the feature points on to this
virtual plane are then utilized to develop an expression that
facilitates the computation of G(t). The Virtual Parallax
algorithm requires at least eight feature points in order to
compute the matrix G(t), which can be subsequently used
to uniquely determine H(t) in (6), given that the intrinsic
camera calibration matrix A is assumed to be known [12].
The matrix H(t) can be decomposed to its constituent ro-
tation matrix R̄(t) and scaled translation vector x̄h(t) by
utilizing the decomposition algorithms described in detail in
works such as [7, 12].

Remark 1 The reader is referred to [2] for computation of
the homography matrix H(t) and the depth ratios αi(t) us-
ing the Virtual Parallax algorithm for non-coplanar feature
points.



3 Camera Kinematics

The translation and rotation kinematics of the camera frame
I relative to the fixed position I∗, denoted by ev(t) ∈ R3
and eω(t) ∈ R3, respectively, are developed in terms of the
image coordinates of one of the feature points (i = 1 cho-
sen here for the sake of simplicity) and the partially recon-
structed Euclidean information from the decomposition of
the homography matrix H(t) as follows

ev ,
£
u1 − u∗1 v1 − v∗1 − ln (α1)

¤T
(11)

eω , uφ (12)

where eω(t) is expressed in terms of the axis-angle repre-
sentation [17] of R̄(t) defined in (5) such that u(t) ∈ R3
represents a unit rotation axis, and φ(t) ∈ R denotes the
rotation angle about u(t), assumed to be confined to the
region −π < φ(t) < π. After taking the time derivative of
(11) and (12), the camera kinematics can be written in the
following form

ė = Jv (13)

where e(t) =
£
eTv (t) eTω (t)

¤T ∈ R6 and v(t) =£
vTc (t) ωTc (t)

¤T ∈ R6, where vc(t),ωc(t) ∈ R3 denote
the linear and angular velocities of the camera relative to
the reference position I∗ but expressed in the local frame I.
In (13), J(t) ∈ R6×6 is the following Jacobian-like matrix

J =

"
α1
z∗1
Ae1 Ae1 [m1 ]×

03×3 −Lω

#
(14)

where [mi]× ∈ R3×3 denotes the skew-symmetric form of
mi(t), O3×3 ∈ R3×3 denotes a 3 × 3 zero matrix, Aei(t) ∈
R3×3 is a function of the camera intrinsic calibration para-
meters and image coordinates of the ith feature point as
shown below

Aei , A−
⎡⎣ 0 0 ui
0 0 vi
0 0 0

⎤⎦ (15)

and Lω(t) ∈ R3×3 is defined as follows

Lω , I3 − φ

2
[u]× +

⎛⎜⎜⎝1− sinc (φ)

sinc2
µ
φ

2

¶
⎞⎟⎟⎠ [u]2× (16)

where sinc (φ (t)) , sinφ (t)

φ (t)
.

4 Velocity Estimation

Unlike our previous approach [2], where we utilized the
image-space dynamics for every feature point in order to
develop a stack of estimators for their Euclidean positions,
the estimation algorithm presented in this paper is based
on a stack of velocity estimators; one per feature point. To
facilitate this development, the kinematic expression in (13)
is rewritten for every feature point tracked by the vision
system as follows

ėi = Jkivi (17)

where

Jki =

∙
αiAei Aei [mi]×
03×3 −Lω

¸
(18)

vi =
h

1
z∗
i
vTc ωTc (t)

iT
. (19)

Note that the first three elements of vi(t) ∈ R6 in (19) de-
note the linear velocity of the ith feature point scaled by the
constant depth z∗i . The scaled motion signal ėi(t) ∈ R6 is
estimated utilizing the following continuous estimator

˙̂e i ,
Z t

t0

(Ki + I6×6)ẽi(τ)dτ +
Z t

t0

ρisgn (ẽi(τ)) dτ

+(Ki + I6×6)ẽi(t) (20)

where ˙̂e i(t) ,
h
˙̂e
T
vi(t) ˙̂e

T
ω (t)

iT
∈ R6 denotes the esti-

mate of the signal ėi(t), ẽi(t) , ei(t) − êi(t) ∈ R6 is the
estimation error in ei(t), Ki, ρi ∈ R6×6 are positive defi-
nite constant diagonal gain matrices, and sgn(ẽi) denotes
the signum function applied to each element of the vector
ẽi(t). The development of the above estimator is described
in detail in [3]. To summarize, it was shown that the esti-
mator in (20) asymptotically identifies the signal ėi(t) (i.e.,
˙̂ei(t) → ėi(t) as t → ∞), provided that the jth diagonal
element of the gain matrix ρi and the j

th element of the
vectors

..
ei (t) and

...
ei (t) satisfies the following condition for

all i feature points

[ρi]j ≥
¯̄̄£ ..
ei
¤
j

¯̄̄
+
¯̄̄£...
ei
¤
j

¯̄̄
∀j = 1, 2, ...6. (21)

The analysis presented in [3] demonstrated that the estima-
tor in (20) satisfies the following property

ẽi(t), ˙̃e i(t) ∈ L∞ ∩ L2. (22)

The result in (22) is critical for the subsequent Euclidean
position estimator design. Since Jki(t) is full rank, and com-
posed of known signals, the estimate for the scaled velocity

signal, denoted by v̂i(t) =
h

1
z∗i
v̂Tc ω̂Tc (t)

iT ∈ R6 can be
obtained from (17) and (20) as follows

v̂i = J
−1
ki

.

êi (23)

and as a consequence of the result in (22), it can be shown
[2] that the estimation error in scaled velocity, denoted by
ṽi(t) , vi(t)− v̂i(t) ∈ R6 satisfies the following

ṽ(t) ∈ L∞ ∩ L2 (24)

and v̂i(t) → vi(t) as t→∞. (25)

5 Euclidean Position Estimation

From (17), the kinematic signal ėi(t) for the ith feature point
can be written in terms of the scaled velocity of any other
jth feature point, j 6= i. Choosing j = 1 for the sake of
simplicity, it can be shown that

ėi = Jkidiag (λi,λi, λi, 1, 1, 1) J
−1
k1 ė1 (26)

where

λi =
z∗1
z∗i

(27)



is the unknown depth ratio, and diag(·) ∈ R6×6 denotes a
diagonal matrix. In terms of the estimates ˙̂ei(t), the expres-
sion in (26) can be rewritten in the following manner

˙̂ei = Jkidiag (λi, λi,λi, 1, 1, 1)J
−1
k1
˙̂e1 + ηi (28)

where ηi(t) ∈ R6 is defined as follows

ηi = Jkidiag (λi,λi,λi, 1, 1, 1) J
−1
k1
˙̃e1 − ˙̃ei. (29)

After substituting for Jki(t) in (28) and simplifying the re-
sulting expression, the translational kinematics for the ith

feature point can be expressed as

ȳi = λih̄1i + h̄2i + ηvi (30)

where ȳi(t) , ˙̂evi(t) ∈ R3, ηvi(t) ∈ R3 is composed of the
first three elements of ηi(t), and h̄1i(t), h̄2i(t) ∈ R3 are the
following measurable signals

h̄1i =
αi
α1

³
AeiA

−1
e1
˙̂ev1 +Aei [m1]× L

−1
ω
˙̂ew
´

(31)

h̄2i = −Aei [mi]× L
−1
ω
˙̂ew. (32)

In terms of a subsequently designed estimate λ̂i(t) ∈ R for
the depth ratio λi, the estimate for ȳi(t), denoted by ˆ̄yi(t) ∈
R3, can be expressed as follows

ˆ̄yi = λ̂ih̄1i + h̄2i. (33)

After denoting ˜̄yi(t) , ȳi(t) − ˆ̄yi(t) ∈ R3 as the estimation
error signal, it can be seen from (30) and (33) that

˜̄yi = λ̃ih̄1i + ηvi (34)

where λ̃i(t) , λi(t) − λ̂i(t) ∈ R. Based on the subsequent
Lyapunov-based stability analysis, the depth ratio estimate
λ̂i(t) is updated per the following adaptive least-squares up-
date law

˙̂
λi = βiLih̄

T
1i ˜̄yi (35)

where βi > 1 ∈ R is a positive constant, Li(t) ∈ R is an
estimation gain that is computed as follows

d

dt
L−1i = h̄T1ih̄1i (36)

and initialized such that L−1i (0) > 0.

5.1 Stability Analysis

Theorem 1 The update law defined in (35) ensures that
λ̂i(t) → λi as t → ∞ provided that the following persistent
excitation condition is satisfied

γ1 ≤
Z t0+T

t0

h̄T1i(τ)h̄1i(τ)dτ ≤ γ2 (37)

where t0, T, γ1, γ2 ∈ R are positive constants.

Proof : Let V (t) ∈ R denote a non-negative scalar function
defined as follows

V , 1

2
λ̃iL

−1
i λ̃i. (38)

After taking the time derivative of (38) and substituting the
adaptive update law in (35), the following expression can be
obtained

V̇ = −βiλ̃iL−1i Lih̄
T
1i

³
λ̃ih̄1i + ηvi

´
≤ −βi

¯̄̄
λ̃i

¯̄̄2 °°h̄1i°°2 + ¯̄̄βiλ̃ih̄T1iηvi ¯̄̄ . (39)

After utilizing the nonlinear damping argument [10], the sec-
ond term in (39) can be upper-bounded as follows¯̄̄

βiλ̃ih̄
T
1iηvi

¯̄̄
≤
¯̄̄
λ̃i

¯̄̄2 °°h̄1i°°2 + β2i kηvik2 , (40)

hence, the time derivative of (38) can be upper-bounded in
the following manner

V̇ ≤ −µi
¯̄̄
λ̃i

¯̄̄2 °°h̄1i°°2 + β2i kηvik2 (41)

where µi = (βi − 1) ∈ R is a scalar positive constant. From
(22), (24) and (29), we can show that ηvi(t) ∈ L2 ∩L∞, and
hence,Z t

t0

µi

¯̄̄
λ̃i (τ)

¯̄̄2 °°h̄1i (τ )°°2 dτ ≤ V (0)− V (∞) + εi (42)

where εi ∈ R is a positive constant such thatZ t

t0

β2i kηvi (τ)k2 dτ ≤ εi. (43)

From (42), it can be concluded that λ̃i(t)h̄1i(t) ∈ L2. As
evident from (38) and (42), V (t) ≤ V (0) + ε for any time
t, and hence, V (t) ∈ L∞; therefore, λ̃i(t) ∈ L∞. Since the
term h̄1i(t) defined in (31) is composed of bounded signals,
λ̃i(t)h̄1i(t) ∈ L∞∩L2. From (34), ˜̄yi(t) ∈ L∞, and it follows
from (35) that ˙̂λi(t),

˙̃λi(t) ∈ L∞. Following the analysis
presented in [3], we can show that the signal ˙̄yi(t) ∈ L∞,
and hence, from taking the time derivative of (31), it can
be shown that ˙̄h1i(t) ∈ L∞. Hence, we have established
that λ̃i(t)h̄1i(t) is uniformly continuous, based on the fact

that λ̃i(t)h̄1i(t) and d
dt

³
λ̃i(t)h̄1i(t)

´
are bounded signals [4].

Utilizing Barbalat’s lemma [4], it can be concluded that

λ̃i(t)h̄1i(t)→ 0 as t→∞. (44)

If the signal h̄1i(t) satisfies the persistent excitation condi-
tion [16] given in (37), then it can be concluded from (44)
that

λ̃i(t)→ 0 as t→∞. (45)

¤

Remark 2 From (31), it can be observed that the persistent
excitation condition in (37) is easily satisfied if the camera
has non-zero translational velocity.

Remark 3 λ̂i(t) provides an estimate for
z∗1
z∗i
(see (27)). If

z∗1 is known a priori from secondary measurements, an es-
timate for the 3D Euclidean coordinates of the ith feature



point at the reference position, denoted by ˆ̄m∗i (t) ∈ R3, can
be obtained as follows

ˆ̄m
∗
i (t) =

z∗1
λ̂i(t)

A−1p∗i . (46)

If the Euclidean distance between any two features i and j
(i 6= j) is known (i.e.,

°°m̄∗i − m̄∗j°°), then from (35), (46)
and the above theorem, it can be seen that

lim
t→∞

°°°°° 1

λ̂i(t)
A−1p∗i − 1

λ̂j(t)
A−1p∗j

°°°°° = 1

z∗1

°°m̄∗i − m̄∗j°° . (47)
The scale factor z∗1 can be recovered from the above expres-
sion and utilized in (46) in order to determine the Euclidean
coordinates.

6 Simulation Results

For validation of the position estimation algorithm presented
in the previous section, we simulated a static object with 12
feature points in the field of view of a moving camera. The
trajectory for camera translational velocity was chosen as
follows

vc(t) = [cos(t),− sin(t), 0.1 sin(t)]T (m/s). (48)

For the sake of simplicity, the camera intrinsic calibration
matrix in (9) was assumed to be the identity matrix. The
image coordinates of the feature points on the static object
were updated utilizing the kinematics presented in Section
3. The estimator gains were chosen through trial and error
for all i feature points as follows

Ki = diag(10, 10, 10, 10, 10, 10),

ρi = diag(1, 1, 1, 1, 1, 1),

βi = 1.5. (49)

Figure 2 shows the convergence of the inverse depth esti-
mates λ̂i(t) for all feature points on the object. The estima-
tion errors are shown in Figure 3.

7 Experimental Results

Figure 4 shows a single frame from a video sequence uti-
lized to verify the practical performance of the estimator.
The video was captured from a monocular gray-scale cam-
era (Sony XC-ST50) found to have the following intrinsic
calibration parameters

A =

⎡⎣ 797.5 0 312.9
0 819.4 231.8
0 0 1

⎤⎦ . (50)

The camera was mounted on the end-effector of a Puma
560 industrial manipulator arm and programmed to move
along a smooth closed trajectory. The camera was interfaced
to our vision system through an Imagenation PXC200-AF
framegrabber, and triggered to capture images at the rate
of 20 frames per second through an external time source.
We utilized an implementation of the Lucas-Kanade feature
tracking algorithm [11] provided in the OpenCV computer
vision library [15] to detect and track feature points in the
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Figure 2: Convergence of scaled inverse depth estimates
(dimensionless) for all feature points on the ob-
ject (simulated camera motion).
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Figure 3: Error in depth estimation (simulated camera
motion).

video stream. The implementation of feature tracking and
depth estimation programs were in C++. The estimator
utilized the gains shown in (49). Table 1 shows a compar-
ison between the actual and the estimated lengths in the
scene. The time evolution of the inverse depth estimates are
shown in Figure 5. Note that the depth estimates converge
quickly, in a matter of a few seconds as opposed to several
tens of seconds required by the estimator design based on
pixel dynamics in our previous work [2].

8 Conclusions

This paper presented an algorithm to identify the Euclid-
ean coordinates of features points in a static environment
using a calibrated monocular moving camera. The work
presented here utilizes an approach to geometric modeling
similar to our previous work [2], but describes the develop-
ment of an alternate nonlinear estimation algorithm which
the authors believe to be simpler in mathematical formula-



Figure 4: A frame from the doll-house video sequence used
in the experimental validation. The white dots
are the tracked feature points.
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Figure 5: The time evolution of inverse depth estimates
from the experimental test-bed.

Object Act. dim. (cm.) Est. dim. (cm.)
Length I 23.6 23.4
Length II 39.7 40.4
Length III 1.0 1.0
Length IV 13.0 13.1
Length V 10.0 10.1
Length VI 19.8 19.7
Length VII 30.3 30.1

Table 1: Estimated dimensions from the experimental test-
bed.

tion, and more intuitive. The performance of the algorithm
has been verified through simulations and an experimental
implementation.
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